


# Adjustable Speed Drive Energy Applications

Douglas Reichardt – Toshiba St. Louis





#### **Industries and Applications**

#### **Industries Served:**

- Chemical
- City Municipality
- Coal Mine
- Food
- Industrial Marine
- Irrigation
- Paper
- Petroleum
- Power Plant
- Water/Wastewater

#### **Applications (Pumps):**

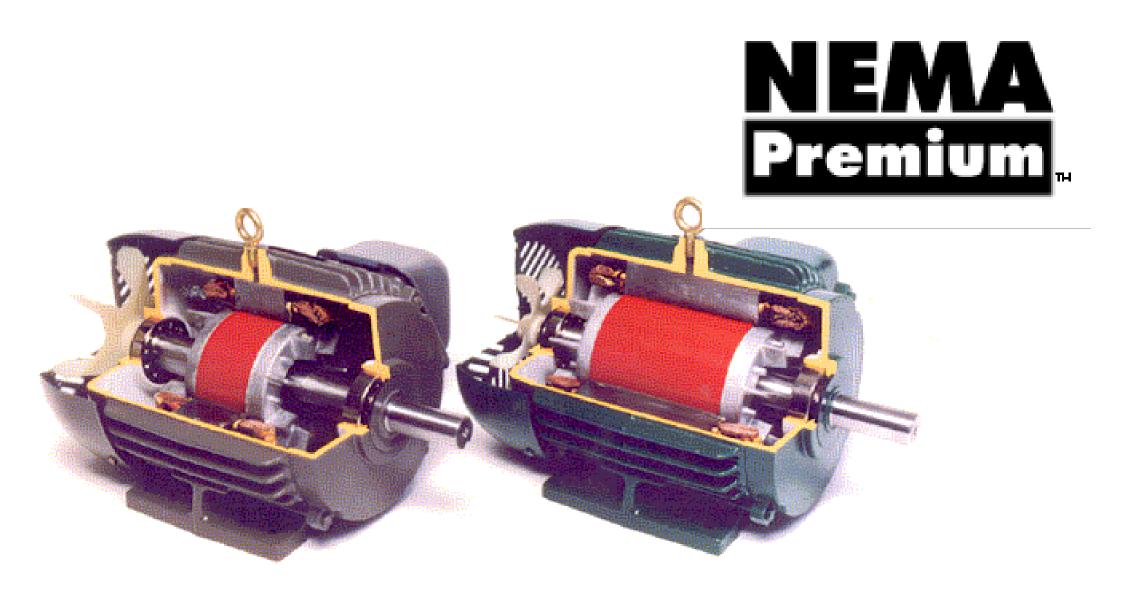
- Bilge
- Disc Flow
- Grinder
- Mixed-Flow Impeller
- Recessed Impeller
- Slurry
- Vertical Multi-Stage
- Vertical Turbine
- Water










## **Objectives**

Motor design and applications

- Understand the limitations of AC Motors and different starting methods
- Relate the requirements of an induction motor to an ASDs design

**ASD** Applications

- Different applications for drives and why they are used
- Energy savings using ASDs
- Some of the concerns with using ASDs and how to avoid issues



Standard

Toshiba EQP Global SD Energy Independence and Security Act of 2007

## **Limitation with Full Voltage Starters**

Where:

50

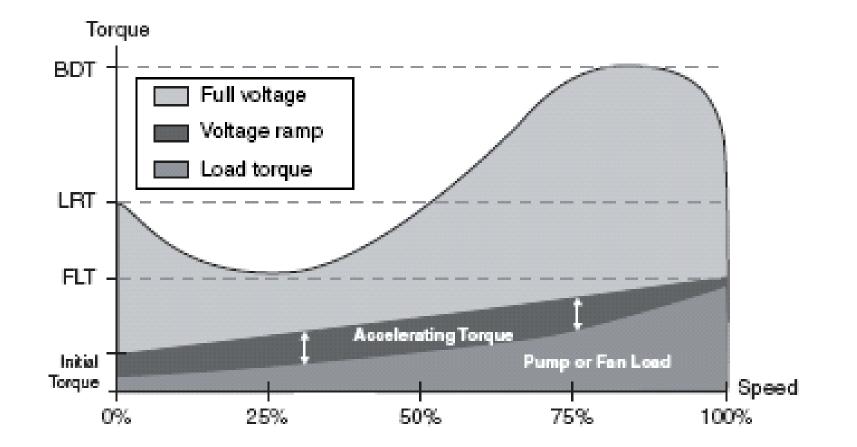
4

A = Maximum number of starts per hour. 2 Pole 4 Pole 6 Pole B = Maximum product of starts per hour times HP С В Α В Α В С Α load Wk<sup>2</sup>. C = Minimum rest or off5 8.1 5.7 83 16.3 42 18.4 71 27 time in seconds between starts. 7.5 7 8.3 15.8 88 13.9 39 44 104 Example: 25 hp, 4 pole, load  $Wk^2 =$ 10 6.2 11 92 12.5 51 46 14.2 137 From Table, A = 8.8, 15 5.4 16 100 10.7 75 50 12.1 200 B = 122. Starts per hour =122/50 20 4.8 21 110 9.6 55 10.9 262 99 = 2.44 Starts per hour 25 4.4 115 58 26 8.8 122 10 324

С

37

39


41

44

48

51

Reduced Voltage Solid State Starter Speed Torque Curve (No Energy Savings)



# What Is an Inverter Duty Motor?

Any 3 phase motor will work with an inverter (ASD), does that mean that it is inverter duty?

- **1)** An inverter duty motor should meet NEMA MG1 Part 31 for inverter duty wire withstand ratings for peak voltage spikes.
- 2) An inverter duty motor should have a speed range listed for VT and CT on the nameplate. Some motor manufacturers are only 2:1 of 4:1.- A separate powered blower may be required on one manufacturer's motor, but not on another.
- **3)** An inverter duty motor should have insulated bearings on both ends, especially on large 400 frame motors and larger. Smaller HP motors are less common to have these issues.
- **4)** Try to match motor and drive manufacturers when possible for packaged warranties, especially when they cover bearings.



7



## ASD's offer two economic benefits to end users

- Enhanced production process control
- Energy savings by matching motor speed with load

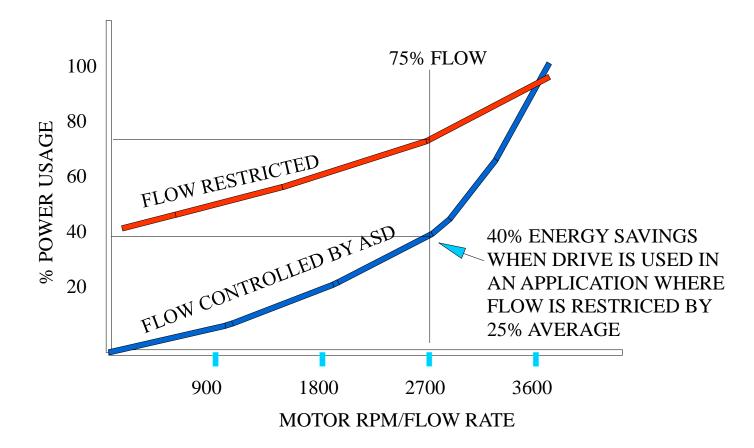
Fans & pumps are excellent retrofit candidates

• These represent 18-25% of total installed base

#### **More ASD Facts**

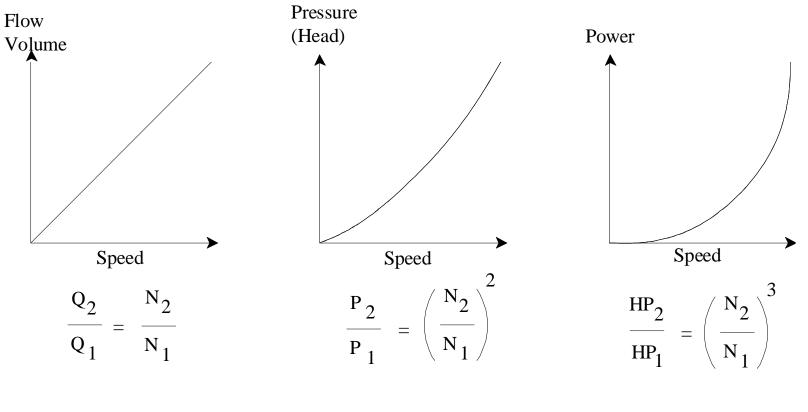
ASD's can match the speed of an AC motor to the requirements of a fluctuating load

For centrifugal loads (most applications) power consumption is equal to the cube of the speed


• (Affinity Laws)

The savings available for matching system requirements is very high

#### **Affinity Laws**


9

As the speed of a centrifugal load decreases, the horsepower requirement will decrease with the cube of the speed while flow is proportional to speed.



#### AFFINITY LAWS

Centrifugal Loads [Fans, Pumps (no static head), etc.]



Where:

N = Fan or Pump Speed

Q = Flow (CFM)

P = Pressure (Static inches of water or feet of head)

HP = Horsepower

## Numeric Description of the Affinity Laws

11

| Speed | Flow | Required<br>Power |
|-------|------|-------------------|
| 100%  | 100% | 100%              |
| 90%   | 90%  | 73%               |
| 80%   | 80%  | 50%               |
| 70%   | 70%  | 34%               |
| 60%   | 60%  | 22%               |
| 50%   | 50%  | 13%               |
| 40%   | 40%  | 6%                |
| 30%   | 30%  | 3%                |

## **Three Basic Types of Loads**

- Constant Torque
  - The load is essentially the same throughout the speed range.
- Variable Torque
  - The load requirements increase with an increase in speed
- Constant Horsepower
  - The load decreases as speed increases

Constant Torque Loads

- the torque requirement is the same regardless of speed
- horsepower increases linearly with speed
- Lifting Equipment, Conveyors, Rolling Mills, Extruders, and Planers are examples of constant torque loads.

Torque = Constant Hp = Speed



Variable Torque Loads

- the torque requirement increases as the square of the speed
- the horsepower requirement increases with the cube of the speed
- Fans, Blowers, Centrifugal Pumps, and Centrifuges are examples of this type of equipment

Torque = Speed Squared (N<sup>2</sup>)

HP = Speed Cubed (N<sup>3</sup>)



**Constant Horsepower** 

15

- Torque requirements decrease by the inverse of the increase in speed
- Horsepower requirements are constant regardless of speed
- Winders, Rotary Cutting Equipment, De-reelers, and Lathes are examples of constant horsepower equipment

Torque = Speed Squared (N<sup>2</sup>)

**Horsepower = Constant** 



16

CT vs. VT Speed Range Starting/Running Torque Inertia Accel/Decel Time Horsepower/Voltage/Current Harmonics Distance **Environmental Considerations** Speed Regulation Input/Output Power Cables



# Using reactors and filters

| Device                 | Installation            | Function                                                                                                                                                                                    |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Line Reactor        | Prior to drive          | <ul> <li>Mitigate voltage surges</li> <li>Reduce input voltage</li> <li>Reduce drive harmonics</li> <li>Improvement of power factor</li> </ul>                                              |
| Harmonic Filter        | Prior to drive          | Reduces harmonic content of drive                                                                                                                                                           |
| DC Link Reactor        | Across DC bus           | <ul><li>Reduces DC bus ripple</li><li>Adds system impedance</li></ul>                                                                                                                       |
| Output Load Reactor    | Between drive and motor | Mitigates output transients                                                                                                                                                                 |
| dV/dt Long Lead Filter | Between drive and motor | <ul> <li>Reduces common mode voltage<br/>spikes that can damage motor</li> <li>Reduces crosstalk between output<br/>leads</li> <li>Used for lead lengths between 200-<br/>1500ft</li> </ul> |
| Sinewave Filter        | Between drive and motor | <ul><li>Use with extended lead lengths</li><li>Tuned to drive carrier frequency</li></ul>                                                                                                   |

#### **Energy Savings Software**

#### le Energy Savings Estimator

#### Welcome to the Energy Savings Estimator

Follow each step to complete your energy savings estimation.

- 1. Customer Information
- 2. Utility Information
- 3. Define System
- 4. Energy Estimation
- 5. View, Print or E-mail Energy Savings Estimation Report



-----

×

#### TOSHIBA

Show introduction screen

dain Menu

(2) Help

#### **Reduced Energy Consumption**

#### **Energy Savings**

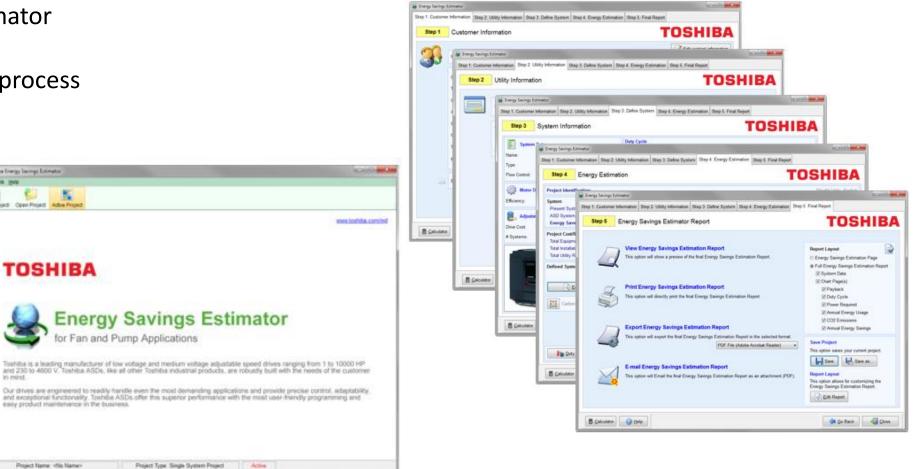
Help reduce energy consumption when driving variable torque load.

#### **Energy Savings Tool**

- **Cost Savings Estimator** 
  - Easy
  - Simple 5 step process

in Testsia Ivaryy Savings Estimates

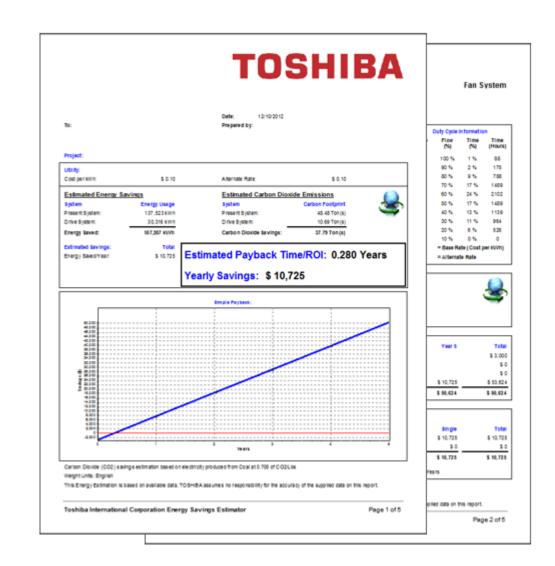
•


New Project Open Project Adve Pro

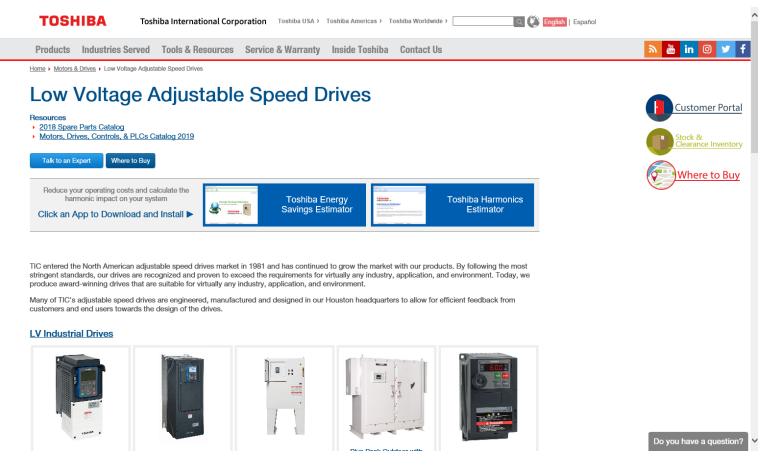
15

He Jook Help

6.5


- Free




#### **Energy Savings Estimator Report**

#### Highlights ASD Energy Savings and Pollution Reduction Analysis

- Estimated Payback
- Yearly Savings
- Energy Savings
- Emission
- Comparisons
- And more



#### https://www.toshiba.com/tic/motors-drives/low-voltage-adjustable-speed-drives



Now available on-line



TOSHIBA INTERNATIONAL CORPORATION

## Thank You

To learn more about Toshiba, please visit our website at <u>www.toshiba.com/tic</u>.

