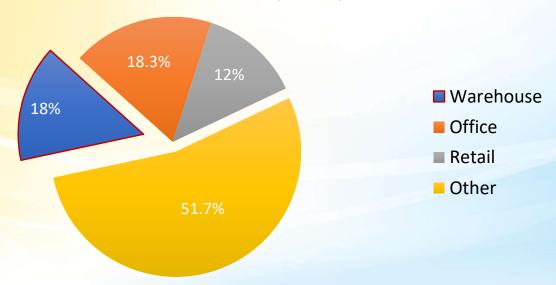


Helping Leaders Create Better Working Environments for Hard
Working People

Introductions

Randy Niederer
Energy Ambassador
Cambridge Air Solutions
Chesterfield, MO


High Performance Space Heating for High Bay Buildings

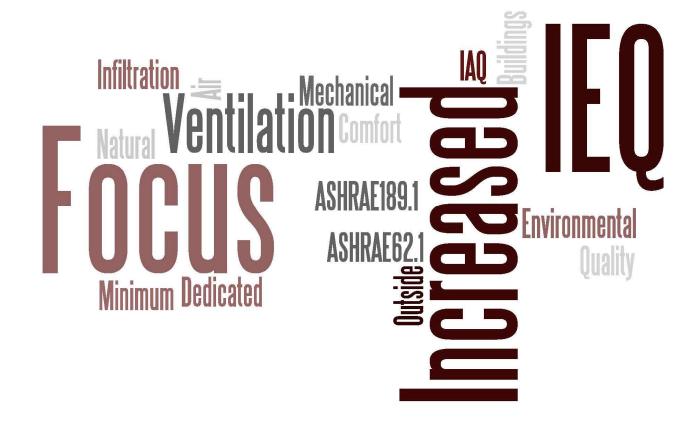
Large Number of Buildings and Floor Space

- Approximately 18% of U.S. commercial floor space belongs to the warehousing and distribution segment*
- Larger segment than retail and almost as much floor space as all commercial office buildings.

High Bay Buildings aren't just Distribution & Warehouse Space....

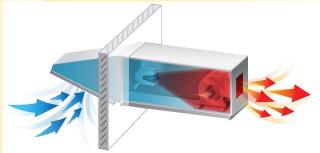
Other applications are:

- Fire Houses
- Greenhouse facility
- Airplane hangers
- Automotive repair facilities
- Indoor sporting facilities
- Tunnel Carwash Facility



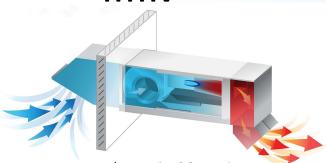
Trend #I - Ventilation

Trend #2 – Energy Efficiency


Ventilation Efficiency ____

HTHV.....Direct Fired Technology

No Heat Exchanger - No Flue Loss - 92% Thermal / 100% Combustions Efficient


MAU = 100% Outside Air

Standard MAU

- Blower in HOT air stream
- 120°F max discharge

HTHV

- Blower in COLD air stream
- 160°F max discharge
- > 140°F rise & > 150°F discharge temp
- Fully Modulating Temperature Controls to meet both ventilation & space heating requirements

Safety Code

- -Non re-circulating direct-fired heaters shall be listed to ANSI Z83.4 (Harmonized US/Canada)
 - 100% Outside Air Technologies
 - -<5 ppm CO
 - -<3 ppm NO²
 - -Industrial & Commercial Occupancies
 - -Permitted as <u>Ventilation</u> and/or Heating Devices for these Buildings
 - -No residential applications or any area containing sleeping quarters.

Utility Rebates

- -HTHV technologies qualify for both prescriptive and custom rebates from natural gas and electric utility providers.
- -HTHV qualifies for federal rebate program EPAct 179D
- -HTHV qualifies for other Rural Energy for America Program (REAP).

Three Technologies in One Unit

Fresh Air (Ventilation)

Provides Ventilation Air (100% Outside Air)

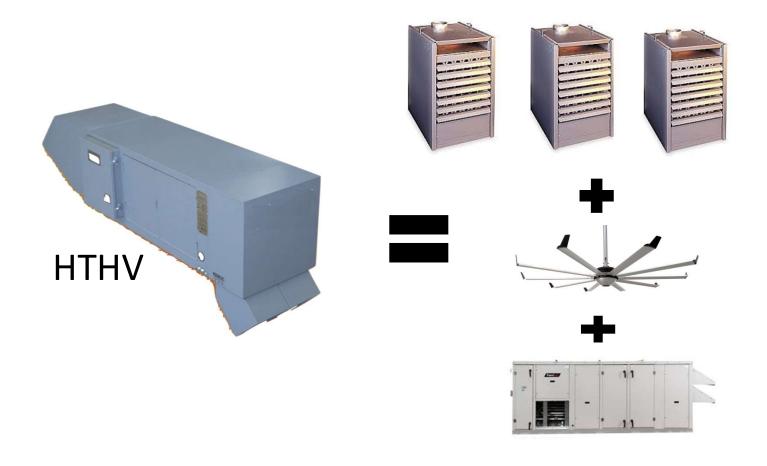
Can meet or exceed ASHRAE 62.1 requirements

Constant speed fan can provide fresh air year around and heat as needed

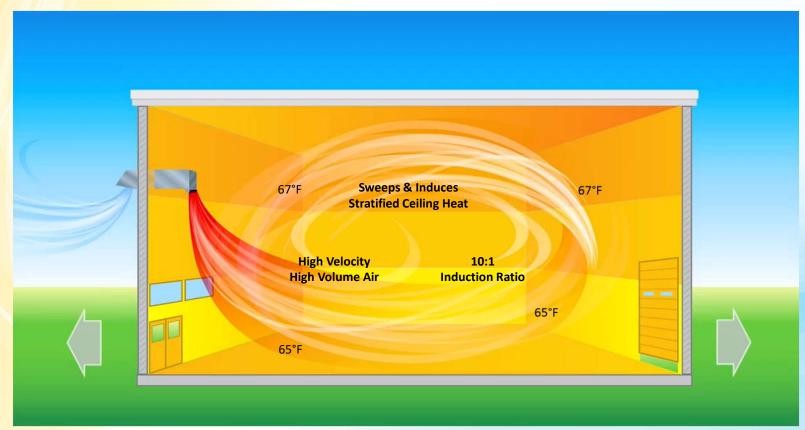
Warm Air (Heating)

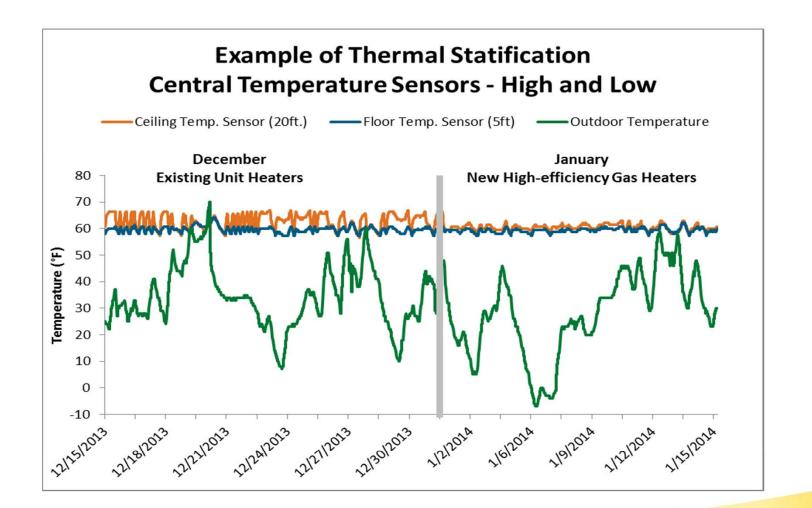
160°F max discharge heats space very efficiently

HTHV offers the highest discharge and temp rise in the industry


MAU, air rotation, recirculating, unit heaters limited temp rise

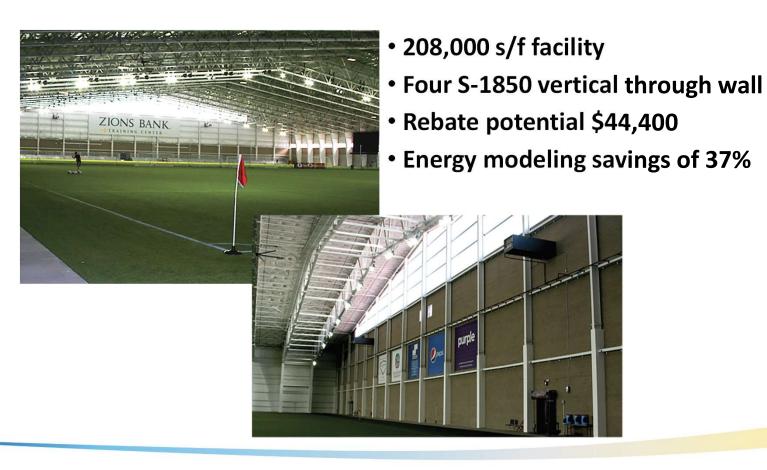
De-stratified Air


High speed blower provides minimal temperature variations from floor to ceiling


Considerable Value for the Money

De-Stratification

CJ Automotive



- 126,000 ft² manufacturing facility
- One S-2200, One S-800 & One S-400
- \$20,400 rebate potential

Month	Therms used	Month	Therms used	Savings
January 2019	11,673	January 2021	5,314	54%
February 2019	9,880	February 2021	7,369	23%
March 2019	5,556	March 2021	2,781	50%

Real Salt Lake Indoor Soccer Facility

Ultimate Soccer

- Ultimate Soccer Indoor Soccer facility
- Goal was warm and even indoor temperatures in the winter
- 28% reduction in natural gas usages
- Two S-1200s with a potential rebate of \$14,000

SWIRE Coke

- Doubled building size from 300,000 s/f to 600,000 s/f
- Nine S-950 rooftop mount units
- •\$51,300 rebate potential

Fuller's Carwash

- Ability to keep doors open in winter months
- reduced energy consumption by 32%
- Two S-950 units roof top mount
- \$11,500 in potential rebates

Big River Steel

Big River Steel

- •Goal keep temperatures above dew point in the winter
- Ten S-2200 vertical through wall
- •\$132,000 in potential rebates

DOE Study

- Over the course of the heating season, the new units reduced natural gas consumption by 20%.
 - Greater than the ~11% savings predicted by thermal efficiency alone.

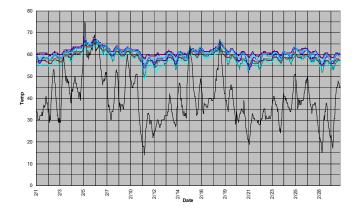
		Gas Heater		% Savings	Notes
		New	Existing	70 30 VIII 163	Notes
Natural Gas Consumption	Therms/HDD	1.67	2.10	20%	Natural gas site-to-source ratio of 1.05*, 100,000 Btu/therm
	Btu/HDD (Source)	175,515	220,584		

Retrofit Case Study

HTHV vs. Make Up Air Distribution Center

Building Specifications

- 700,000 ft²
- 17 year old building
- · Located in Shenandoah Valley, VA

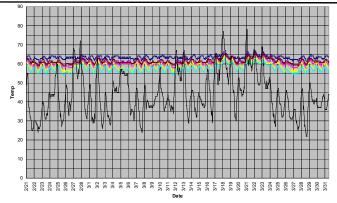


Before – Make Up Air Performance

- Uneven temperatures
- High operating costs

Operating Costs

Based on 59° avg. temp


After - HTHV

Performance

- More even temperatures
- Lower operating Cost

Operating Costs

Based on 61° avg. temp

- HTHV used 47% less gas and reduced annual CO2 by >1,000 metric tons
- Saved approximately \$52,000/year in natural gas cost
- Five S-3200 rooftop mount units
- \$96,000 rebate potential

Efficiency of Heating Technologies

Computer Modeling Results

Stratification Comparison

Energy Plus 4°F Stratification for HTHV, Air Turnover*, Infrared 10°F Stratification for all other systems ASHRAE 62. I Ventilation (0.06 cfm/ft2)

Energy Consumption	Gas (therms)	Fan Electric (kWh)				
ASHRAE 90.1 Baseline	32,563	78,594				
HTHV/Blow-Thru	20,220	5,758				
Draw-Thru	27,506	7,589				
Recirculation	27,805	52,644				
Unit Heater	32,833	16,875				
Air Turnover	26,822	17,153				
Infrared	32,156	11,164				
j.						
HTHV/Blow-Thru	37.9%	92.7%				
Draw-Thru	15.5%	90.3%				
Recirculation	14.6%	33.0%				
Unit Heater	-0.8%	78.5%				
Air Turnover	17.6%	78.2%				
Infrared	1.2%	85.8%				
% Increase vs. HTHV Blow-Thru						
Draw-Thru	36.0%	31.8%				
Recirculation	37.5%	814.2%				
Unit Heater	62.4%	193.1%				
Air Turnover	32.6%	197.9%				
Infrared	59.0%	93.9%				

^{*} Low velocity constant air turnover units require 2-3 building air turnovers per hour to minimize stratification.

Thank You

Randy Niederer

rniederer@cambridgeair.com

